Cifras significativas

Se considera que las cifras significativas de un número son aquellas que tienen significado real o aportan alguna información. Las cifras no significativas aparecen como resultado de los cálculos y no tienen significado alguno. Las cifras significativas de un número vienen determinadas por su error. Son cifras significativas aquellas que ocupan una posición igual o superior al orden o posición del error.

 

Una última forma de expresar el error de un número consiste en afirmar que todas sus cifras son significativas. Esto significa que el error δx es del orden de media unidad de la última cifra que se muestra. Por ejemplo, si el resultado de una medida de longitud es de 5432,8 m, y afirmamos que todas las cifras son significativas, quiere decirse que el error es del orden de 0,5 m, puesto que la última cifra mostrada es del orden de las décimas de metro.

¿Cómo pueden determinarse las cifras significativas a partir del número que expresa el error?

Hay que tener siempre presente que todo error es una estimación y está por tanto sujeto a su vez a una incertidumbre, generalmente grande. Por esto no tiene sentido especificarlo con excesiva precisión. Salvo casos excepcionales, se expresará con una sola cifra significativa.

 

14. Redondeo de Números

 

Hemos visto que todos los números resultantes de una medida tienen una cierta incertidumbre. Es necesario eliminar de estos números aquellas cifras que carecen de significado porque el error es mayor que lo que estas cifras significan.

 

Las reglas que se emplean en el redondeo de números son las siguientes:

_ Si la cifra que se omite es menor que 5, se elimina sin más.

_ Si la cifra eliminada es mayor que 5, se aumenta en una unidad la última cifra retenida.

_ Si la cifra eliminada es 5, se toma como última cifra el número par más próximo; es decir, si la cifra retenida es par se deja, y si es impar se toma la cifra superior.

_ Algunos ejemplos. Si redondeamos 3,678 a tres cifras significativas, el resultado es

3,68, que está más cerca del original que 3,67. En cambio si el número a redondear, también a tres cifras, fuera 3,673, quedaría 3,67 que es más próximo al original que 3,68. Para redondear 3,675, según la tercera regla, debemos dejar 3,68.

Las dos primeras reglas son de sentido común. La tercera es un convenio razonable porque, si se sigue siempre, la mitad de las veces redondeamos por defecto y la mitad por exceso.

 

Cuando los números a redondear sean grandes, las cifras eliminadas se sustituyen por ceros.

 

 

 

 

1 comentario

  1. PRIMERA TAREA DE MEDICIONES « Gabriela/Mediciones said,

    […] Cifras significativas […]

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: